Calculation for Green Wet Basin Storage Capacity

Project Name: \qquad

MSD Reviewer
WM No. \qquad
Property Address:
:__
\square

Development/Property Name: \qquad
GMP Number: \qquad
Design Firm: \qquad
\qquad Telephone: \qquad Email: \qquad
KY PE No.: \qquad

Step A. Site Planning Recommendation
Define goals and primary function of green wet basins based on the Green Wet Basin fact sheet in section 18.4.4. Refer to this section as needed throughout the remainder of this calculation sheet.

Step B. Calculate the Water Quality Volume Required (VR) of water to be removed by the Wet Basin

1. $\mathrm{A}=$ Contributing drainage area to wet basin:
2. $\mathrm{RE}=$ Required Water Quality Volume Rain Event in inches (minimum 0.6 in):
3. $I=$ Impervious cover of the contribution drainage area in percent:
4. $\mathrm{VR}=(1 / 12)(\mathrm{RE})(\mathrm{A})(0.05+(0.009)(\mathrm{I}))=$

Step C. Calculate the Area (a) of the Orifice Outlet Structure. Review section 18.4.3.3.5 as needed.

1. $\mathrm{A}=$ Average surface area of the pond (Average of H and H_{o}) \qquad
2. $\mathrm{C}=$ Orifice coefficient, 0.66 for thin, 0.80 for materials thicker than orifice diameter
3. $\mathrm{T}=$ drawdown time of pond, must be greater than 24 hours
4. $\mathrm{g}=$ Gravity
5. $\mathrm{H}=$ Elevation when pond is full to storage height
6. $\mathrm{H}_{\mathrm{o}}=$ Final elevation of normal pool
7. $\mathrm{a}=$ Area of the orifice outlet (minimum 6 inch outlet orifice)

$$
\mathrm{a}=\left[2 \mathrm{~A}\left(\mathrm{H}-\mathrm{H}_{\mathrm{o}}\right)^{0.5}\right] /\left[3600(\mathrm{C})(\mathrm{T})(2 \mathrm{~g})^{0.5}\right]=
$$

\qquad
Note: Basin modeling analysis can be provided in lieu of the formula provided herein.

Step D. Prepare exhibits A and B for long-term maintenance and operation agreement.

